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Abstract. We comment on a recent paper by Chenet al (1998J. Phys. A: Math. Gen.316473),
wherein a nonlinear deformation ofsu(1, 1) involving two deforming functions is realized in the
exactly solvable quantum-mechanical problem with Pöschl–Teller potential, and is used to derive
the well knownsu(1, 1) spectrum-generating algebra of this problem. We show that one of the
defining relations of the nonlinear algebra, presented by the authors, is only valid in the limiting
case of an infinite square well, and we determine the correct relation in the general case. We also
use it to establish the correct link withsu(1, 1), as well as to provide an algebraic derivation of the
eigenfunction normalization constant.

In an interesting paper (henceforth referred to as I and whose equations will be quoted by their
number preceded by I), Chenet al [1] recently pointed out that the nonlinear deformations of
thesu(2) andsu(1, 1) Lie algebras with two deforming functionsf (J0) andg(J0), introduced
by Delbecq and Quesne [2], can find some useful applications in quantum mechanics. They
indeed claim to have proved that one of such algebras can be realized in a physical system
with Pöschl–Teller potential, which is one of the exactly solvable one-dimensional quantum-
mechanical potentials.

By starting from the ‘natural’ quantum operatorsX, P of Nieto and Simmons [3], they
constructed mutually adjoint lowering and raising operatorsb, b+, which together with the
HamiltonianH generate a nonlinear algebra with two deforming functionsf (H) andg(H).
They also obtained the eigenvalues and (unnormalized) eigenfunctions ofH by using this
algebra instead of solving the Schrödinger equation, and pointed out a relation with the well
knownsu(1, 1) symmetry of the P̈oschl–Teller potential (see [4] and references quoted therein).

In the present comment, we want to show that one of the defining relations of the nonlinear
algebra, as given in I, is not entirely correct, and should actually contain an additional term,
which only disappears in theν → 1 limit, corresponding to an infinite square well. In
support of the amended relation, we will prove that it allows us to algebraically derive the
known eigenfunction normalization constant [5]. Finally, we will establish the correct relation
between the nonlinear algebra andsu(1, 1).

† Directeur de recherches FNRS.
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LetH , b, b+ be defined as in I by

H = p2

2m
+ V (x) V (x) = V0

cos2(kx)
V0 = εν(ν − 1) ε = h̄2k2

2m
(1)

b = 1

2ε

[
X
(
ε + 2
√
εH

)
+

ih̄

m
P

]
(2)

b+ = (b)† = 1

2ε

[(
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)
X − ih̄
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(
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√
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)
+

ih̄

m
P

]
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√
εH√
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(3)

where

X = sin(kx) P = 1
2k{cos(kx), p} = k[cos(kx)p + 1

2ih̄k sin(kx)] (4)

satisfy the commutation relations

[X,P ] = ih̄k2(1−X2) [H,X] = − ih̄

m
P

[H,P ] = ih̄k2

(
2XH − 1

2
εX − ih̄

m
P

)
.

(5)

Note that in equations (2) and (3), we have setγ = (2ε)−1 in accordance with equation (I45),
and thatν can be expressed in terms ofV0 as

ν = 1

2

(
1 +

√
1 +

4V0

ε

)
. (6)

Equation (6) differs from equation (I35), wherein a minus sign is used before the square
root. The plus sign is actually imposed by the condition that the wavefunctions vanish at the
boundaries of the interval(− π

2k ,
π
2k ).

For the commutators ofH , b, andb+, we obtain the results

[H, b] = −bg(H) [H, b+] = g(H)b+ g(H) = −ε + 2
√
εH (7)

[b, b+] = −f (H) = 1 + 2
√
H/ε +

ν(ν − 1)√
H/ε

(√
H/ε − 1

) (8)

which only partly agree with equations (I17) and (I18), as the last term on the right-hand side
of equation (8) is missing there. Since the calculation of the commutator ofb with b+ is not
quite straightforward, we shall now provide some steps of the proof of equation (8).

By using equations (2) and (3), as well as the method devised in I for commuting a function
of H with X or P , we get

bb+ = − 1

4ε2
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)
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] (
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)
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)
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}
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√
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εH
(9)

b+b = 1
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(
ε + 2
√
εH

)
+

ih̄

m
XP

] (
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√
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From these results and equation (5), we obtain the rather complicated expression

[b, b+] = 1

4ε

{
−2[ε3− 2ε2(εH)1/2 + 4(εH)3/2] −X2ε(ε2 − 4εH)− 4

ih̄

m
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εP 2

}
× 1
√
εH

(
ε −√εH

) . (11)
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The latter can, however, be simplified by noting that

ν(ν − 1) = 1

ε
(1−X2)

(
H − p2

2m

)
= 1

4ε2

[
2(ε2 + 2εH) +X2(ε2 − 4εH) + 4

ih̄

m
εXP − h̄2

m2
P 2

]
(12)

where the first equality directly results from equation (1). To obtain the second equality, use
has been made of equation (4), leading to

[cos(kx)p]2 =
(
−1

2
ih̄kX +

P

k

)2

(13)

or

(1−X2)p2 +
1

2
h̄2k2X2 + ih̄XP = −1

2
h̄2k2 +

1

4
h̄2k2X2 − ih̄XP +

1

k2
P 2. (14)

Inserting equation (12) into equation (11) completes the proof of equation (8).
We conclude thatJ0 = H , J+ = b+, andJ− = b do indeed define a nonlinear algebra with

two deforming functionsf (H) andg(H), as introduced in [2], but thatf (H) does contain
an extra term not obtained in I. Since such a term depends upon the potential strength, we get
different algebras for different Hamiltonians. It should be noted that the presence of

√
H/ε in

the denominator does not lead to any problem when acting on the Hamiltonian eigenstates.
The Casimir operator of the nonlinear algebra is given by [2]

C = bb+ + h(H) = b+b + h(H)− f (H) (15)

whereh(H) satisfies the relationh(H)− h(H − g(H)) = f (H), and is given by

h(H) = −
(
1 +

√
H/ε

)2
+
ν(ν − 1)√
H/ε

. (16)

This result, too, differs from equations (I2) and (I19).
The nonlinear algebra can be used to determine the spectrum ofH and to construct all its

eigenstates, and is therefore a spectrum-generating algebra. As proved in I, the eigenvalues
and the ground state wavefunction, obtained from the equation

b|ψ0〉 = 0 (17)

are given by

En = ε(n + ν)2 n = 0, 1, 2, . . . (18)

and

ψ0(x) = N0 cosν(kx) (19)

respectively. The normalization constantN0, calculated by direct integration, is

N0 =
(

k0(ν + 1)√
π0(ν + 1/2)

)1/2

. (20)

The excited states|ψn〉, n = 1, 2, . . . , can be obtained by repeatedly using the relation

b+|ψn〉 = αn+1|ψn+1〉 (21)

whereαn+1 is some yet unknown constant, which we may assume real and non-negative. By
using the explicit form ofb+ and the Hamiltonian eigenvalues, given in equations (3) and (18),
respectively, we get the recursion relation

n + ν + 1

n + ν

[
−1

k
cos(kx)

d

dx
+ (n + ν) sin(kx)

]
ψn(x) = αn+1ψn+1(x). (22)



6708 C Quesne

If we set

ψn(x) = (1−X2)ν/2φn(X) (23)

whereX is defined in equation (4), then equation (22) becomes[
(X2 − 1)

d

dX
+ (n + 2ν)X

]
φn(X) = n + ν

n + ν + 1
αn+1φn+1(X). (24)

Comparison with the differential and recursion relations of Gegenbauer polynomials [6] shows
that

φn(X) = NnC(ν)n (X) (25)

where the normalization constantNn satisfies the recursion relation

Nn
Nn−1

= n(n + ν)

(n + ν − 1)αn
. (26)

Equations (23) and (25), which were already obtained before by Eleonsky and Korolev [7], are
equivalent to equations (I39) and (I40), but provide a simpler expression for the wavefunctions.

To get the wavefunction normalization constantNn, it is clear from equation (26) that we
need an explicit expression forαn. By considering the diagonal matrix element (with respect
to |ψn〉) of both sides of equation (8), and using equation (18), as well as the relation

b|ψn〉 = αn|ψn−1〉 (27)

we obtain the following recursion relation for|αn|2:

|αn|2 − |αn−1|2 = 2n + 2ν − 1 +
ν(ν − 1)

(n + ν − 1)(n + ν − 2)
. (28)

Its solution is given by

|αn|2 = (n + ν)2 − ν(ν − 1)

n + ν − 1
+ β (29)

whereβ is some constant. Since equation (17) imposes the conditionα0 = 0, we get
β = −ν(ν − 1). Hence

αn =
(
n(n + ν)(n + 2ν − 1)

n + ν − 1

)1/2

(30)

in accordance with equations (3.30) and (3.31) of [3].
Inserting equation (30) into equation (26) leads to the result

Nn = N0

(
n!(n + ν)0(2ν)

ν0(n + 2ν)

)1/2

. (31)

By combining equations (20), (23), (25), and (31), we obtain the following form for the
normalized wavefunctions:

ψn(x) =
(
k(n!)(n + ν)0(ν)0(2ν)√
π0(ν + 1

2)0(n + 2ν)

)1/2

cosν(kx)C(ν)n (sin(kx)). (32)

It only remains to take the known relation between Gegenbauer polynomials and associated
Legendre functions [6] into account to get the equivalent form

ψn(x) =
(
k(n + ν)0(n + 2ν)

n!

)1/2

cos1/2(kx)P 1/2−ν
n+ν−1/2(sin(kx)) (33)

given by Nieto [5].
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Equation (30), together with equations (18), (21), and (27), also allows us to determine
the eigenvalue of the Casimir operator (15) corresponding to|ψn〉,

C|ψn〉 = −ν(ν − 1)|ψn〉. (34)

Hence, all the Hamiltonian eigenstates|ψn〉belong to a single unitary irreducible representation
of the nonlinear algebra, which may be characterized byν.

At this stage, we may transform the nonlinear algebra in two different ways: either
by trying to free ourselves from the need for considering different algebras for different
Hamiltonians, or by restricting ourselves to the irreducible representation wherein equation (34)
is satisfied.

In the former case, we may use equations (15) and (16) to expressν(ν − 1) in terms of
C, bb+, and

√
H/ε. Inserting such an expression into equation (8) then leads to an extended

nonlinear algebra, generated byH , b, b+, C, and characterized by the defining relations (7),
as well as

[C,H ] = [C, b] = [C, b+] = 0 (35)√
H/εbb+ −

(√
H/ε − 1

)
b+b = C +

√
H/ε

(
1 + 3

√
H/ε

)
. (36)

Such an algebra may serve as a spectrum-generating algebra for the whole class of Pöschl–
Teller Hamiltonians (1).

In the latter case, we may replaceν(ν − 1) by −C in equation (8). Doing the same in
equations (15) and (16), we may expressC in terms ofbb+ and

√
H/ε as

C =
√
H/ε√

H/ε + 1
bb+ −

√
H/ε

(√
H/ε + 1

)
. (37)

Inserting this expression into the transformed equation (8) leads to the relation
√
H/ε√

H/ε + 1
bb+ −

√
H/ε − 1√
H/ε

b+b = 2
√
H/ε. (38)

Hence, the operators

J0 =
√
H/ε J+ = b+

( √
H/ε√

H/ε + 1

)1/2

=
(√

H/ε − 1√
H/ε

)1/2

b+

J− =
( √

H/ε√
H/ε + 1

)1/2

b = b
(√

H/ε − 1√
H/ε

)1/2 (39)

satisfy the defining relations ofsu(1, 1)

[J0, J±] = ±J± [J+, J−] = −2J0 (40)

while the operator (37) reduces to thesu(1, 1) Casimir operator,C = J−J+ − J0(J0 + 1). We
conclude that under the substitution of−C for ν(ν − 1), the spectrum-generating nonlinear
algebra becomes equivalent to the well knownsu(1, 1) algebra of the P̈oschl–Teller potential.

As a final point, let us comment on the limitV0→ 0 orν → 1, corresponding to an infinite
square well of widthL = π/k. In such a case, the additional term in equation (8) vanishes,
so that the results of I are applicable. In particular, equation (I48) provides an acceptable
realization ofsu(1, 1). Since such a realization differs from equation (39), one may wonder
at such a discrepancy. The latter is, however, easily understood by noting that with realization
(I48) the nonlinear algebra Casimir operatorC actually differs from that ofsu(1, 1) by an
additive constant, whereas with realization (39) both exactly coincide.
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