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Abstract. We comment on a recent paper by Clegmal (1998J. Phys. A: Math. Gen316473),
wherein a nonlinear deformation of (1, 1) involving two deforming functions is realized in the
exactly solvable quantum-mechanical problem wittséhl-Teller potential, and is used to derive

the well knownsu (1, 1) spectrum-generating algebra of this problem. We show that one of the
defining relations of the nonlinear algebra, presented by the authors, is only valid in the limiting
case of an infinite square well, and we determine the correct relation in the general case. We also
use it to establish the correct link witk (1, 1), as well as to provide an algebraic derivation of the
eigenfunction normalization constant.

In an interesting paper (henceforth referred to as | and whose equations will be quoted by their
number preceded by I), Chetal [1] recently pointed out that the nonlinear deformations of
thesu(2) andsu(1, 1) Lie algebras with two deforming function& Jo) andg (Jp), introduced

by Delbecq and Quesne [2], can find some useful applications in quantum mechanics. They
indeed claim to have proved that one of such algebras can be realized in a physical system
with Pdschl-Teller potential, which is one of the exactly solvable one-dimensional quantum-
mechanical potentials.

By starting from the ‘natural’ quantum operatots P of Nieto and Simmons [3], they
constructed mutually adjoint lowering and raising operatgrs*, which together with the
HamiltonianH generate a nonlinear algebra with two deforming functignd ) andg(H).

They also obtained the eigenvalues and (unnormalized) eigenfunctialshyf using this
algebra instead of solving the Sdkinger equation, and pointed out a relation with the well
knownsu (1, 1) symmetry of the Bschl-Teller potential (see [4] and references quoted therein).

Inthe present comment, we want to show that one of the defining relations of the nonlinear
algebra, as given in |, is not entirely correct, and should actually contain an additional term,
which only disappears in the — 1 limit, corresponding to an infinite square well. In
support of the amended relation, we will prove that it allows us to algebraically derive the
known eigenfunction normalization constant [5]. Finally, we will establish the correct relation
between the nonlinear algebra and1, 1).

1 Directeur de recherches FNRS.
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Let H, b, b* be defined as in | by

PP W _ _R?
H = %‘*V(X) Vix) = 020 Vo=€ev(v —1) €=—— (1)
1 in
bZZ[X (e+2«/eH)+—P:| @)

bt =)t = 21 [(e+2J_)X——P] 216 [X(e—Z@)+£P]% 3)
where

X = sin(kx) P = Jk{coskx), p} = k[costkx) p + ihk sin(kx)]  (4)
satisfy the commutation relations

[X, P] = iRk?*(1 — X?) [H, X] = —ﬂP

_ A (5)
[H, P] = ihk? (ZXH — ZeX — —P> .
2 m

Note that in equations (2) and (3), we havejset (2¢)~! in accordance with equation (145),
and thatv can be expressed in termséf as

1(1+,/1+4—Vo> (6)
2 €

Equation (6) differs from equation (135), wherein a minus sign is used before the square
root. The plus sign is actually imposed by the condition that the wavefunctions vanish at the
boundaries of the interval-Z, 7).

For the commutators o, b, andb™, we obtain the results

[H,b] = —bg(H) [H,b"] = g(H)b" gH)=—€+2veH (7)

o _ v(iv—1)
[b,b7] = f(H)_1+2‘/H/6+JH_/e(JH_/e—1) (8)

which only partly agree with equations (117) and (118), as the last term on the right-hand side
of equation (8) is missing there. Since the calculation of the commutatowith 4* is not
quite straightforward, we shall now provide some steps of the proof of equation (8).

By using equations (2) and (3), as well as the method devised in | for commuting a function
of H with X or P, we get

bb* = — 1{[X2(e—2J_)+—XP](3e+2@)

462
+hPX(e—2~/_)—h—2 2}% 9)

b*b = 4:2”:X2<e+2«/_)+—XP:| (3¢ - 2veH)

ih €eH
+ PX(e+2 - — _ 10
(e +2ver) - 1 } e (10)
From these results and equation (5), we obtain the rather complicated expression

1 in R
[b, "] = — {1 —2[€® — 2?(e H)Y? + 4(c H)*?] — X?%€(e®> — 4 H) — 4—e?X P + —€P?

4e m m?2

1

x@<€_@). (12)
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The latter can, however, be simplified by noting that

2
v —1) = %(1—X2) <H _ §—m>

1 in n?
= = |2(2+ 2¢H) + X2(? — deH) + 42 exP — _p2| (12
4e? m m?

where the first equality directly results from equation (1). To obtain the second equality, use
has been made of equation (4), leading to

» 1 P\
[cos(kx)p] = —Elth + T (13)
or
1_ _ 1_ 1_ _ 1
1—X?>p?+ Ehzkzxz +ihXP = —§h2k2 + thkZXz —hXP+ ﬁp? (14)

Inserting equation (12) into equation (11) completes the proof of equation (8).
We conclude thafy = H, J+ = b*, andJ_ = b do indeed define a nonlinear algebra with
two deforming functionsf (H) andg(H), as introduced in [2], but thaf (H) does contain
an extra term not obtained in I. Since such a term depends upon the potential strength, we get
different algebras for different Hamiltonians. It should be noted that the preseg¢& of in
the denominator does not lead to any problem when acting on the Hamiltonian eigenstates.
The Casimir operator of the nonlinear algebra is given by [2]

C =bb*+h(H)=b*b+h(H) — f(H) (15)
whereh(H) satisfies the relation(H) — h(H — g(H)) = f(H), and is given by
_ 2 pylv-1
h(H) = — (1+,/H/e) v (16)

This result, too, differs from equations (12) and (119).

The nonlinear algebra can be used to determine the spectréhaatl to construct all its
eigenstates, and is therefore a spectrum-generating algebra. As proved in I, the eigenvalues
and the ground state wavefunction, obtained from the equation

blyo) = 0 (17)
are given by

E, = e(n+v)? n=0,12,... (18)
and

Yo(x) = Nocos'(kx) (19)
respectively. The normalization constavif, calculated by direct integration, is

kC(v+1 12
No= <ﬁr§v + 1)/2>> ' €0
The excited statelgl,), n = 1, 2, ..., can be obtained by repeatedly using the relation
b |Y) = | ¥nen) (21)

whereq,+1 is some yet unknown constant, which we may assume real and non-negative. By
using the explicit form ob* and the Hamiltonian eigenvalues, given in equations (3) and (18),
respectively, we get the recursion relation

n+v+1

n+v

[—% COS(kX)% +(n+v) Sin(kx)] Vn(X) = dye1¥ne1(x). (22)
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If we set
Yax) = (1= X?)"2¢,(X) (23)
whereX is defined in equation (4), then equation (22) becomes

[(X2 - l)% +(n+ 2V)X} Pn(X) = U +1Pn+1(X). (24)

n+v+1

Comparison with the differential and recursion relations of Gegenbauer polynomials [6] shows
that

P (X) = N,C (X) (25)
where the normalization constani, satisfies the recursion relation
+
No  n(n+v) (26)

'/\/;l—l B (n+v—1)ocn'

Equations (23) and (25), which were already obtained before by Eleonsky and Korolev [7], are
equivalentto equations (139) and (140), but provide a simpler expression for the wavefunctions.
To get the wavefunction normalization constafy, it is clear from equation (26) that we
need an explicit expression fay,. By considering the diagonal matrix element (with respect

to |v,,)) of both sides of equation (8), and using equation (18), as well as the relation

bwfn) = Olnwfn—l) (27)
we obtain the following recursion relation fir,, |2:
viv—1)

2 2
wl” =l =2n+20 — 1+ . 28
|atn|” — loty—1] n+2v v —Dn+v—2 (28)
Its solution is given by
-1
= (40?2 g (29)
n+v-—1

where g is some constant. Since equation (17) imposes the conditior= 0, we get
B =—v(v—1). Hence

. 1/2
o, — <n(n+v)(n+2v 1)) (30)
n+v-—1
in accordance with equations (3.30) and (3.31) of [3].
Inserting equation (30) into equation (26) leads to the result
n!(n +v)I"'(2v) 1/2
W= _ 31
N, NO( vl (n + 2v) ) (31)

By combining equations (20), (23), (25), and (31), we obtain the following form for the
normalized wavefunctions:
k() (n +v)L (V)[(2v)
wn(x) = 1
VAT (v+ ) (n+2v)

It only remains to take the known relation between Gegenbauer polynomials and associated
Legendre functions [6] into account to get the equivalent form

Yn(x) = <k(n - V):'(” - zv))l/z

given by Nieto [5].

1/2
) cog (kx)C (sin(kx)). (32)

cos”2(kx) P12} (sin(kx)) (33)
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Equation (30), together with equations (18), (21), and (27), also allows us to determine
the eigenvalue of the Casimir operator (15) corresponding.tn

ClYm) = —v(v = D). (34)

Hence, all the Hamiltonian eigenstat¢s) belong to a single unitary irreducible representation
of the nonlinear algebra, which may be characterized.by

At this stage, we may transform the nonlinear algebra in two different ways: either
by trying to free ourselves from the need for considering different algebras for different
Hamiltonians, or by restricting ourselves to the irreducible representation wherein equation (34)
is satisfied.

In the former case, we may use equations (15) and (16) to exp(ess 1) in terms of
C, bb*, and./H/e. Inserting such an expression into equation (8) then leads to an extended
nonlinear algebra, generated By b, b*, C, and characterized by the defining relations (7),
as well as

[C,H] =[C,b] = [C,b"] = O (35)
JH/ebb* — (,/H/e — 1) b*h = C +/H/e (1 + &/H/e) . (36)

Such an algebra may serve as a spectrum-generating algebra for the whole classhéf P
Teller Hamiltonians (1).

In the latter case, we may replace — 1) by —C in equation (8). Doing the same in
equations (15) and (16), we may expré€ss terms ofbb* and/H /¢ as

VHJe .
€= et _ JHJe (w/H/e+1>. (37)

Inserting this expression into the transformed equation (8) leads to the relation

JH/e + ~H/e=1 .
\/H_/G"'lbb - e b"b=2/H/e.

Hence, the operators

1/2 o 1/2
Jo=+/HJe Jo=b* <—VH/€> = (L_]) bt
(39)

(38)

JH/e+1 H/e
;- ( VHJE )“2b b (m— 1>1/2
- \JHJe+1 N JHJe
satisfy the defining relations efi(1, 1)
[Jo, J1] = £+ [Je, J-] = —20 (40)

while the operator (37) reduces to the1, 1) Casimir operatorC = J_J+ — Jo(Jo+1). We
conclude that under the substitution-et” for v(v — 1), the spectrum-generating nonlinear
algebra becomes equivalent to the well knowiil, 1) algebra of the Bschl-Teller potential.

As afinal point, let us comment on the limi§ — 0 orv — 1, corresponding to an infinite
square well of widthl. = = /k. In such a case, the additional term in equation (8) vanishes,
so that the results of | are applicable. In particular, equation (148) provides an acceptable
realization ofsu(1, 1). Since such a realization differs from equation (39), one may wonder
at such a discrepancy. The latter is, however, easily understood by noting that with realization
(148) the nonlinear algebra Casimir operatoractually differs from that ofu(1, 1) by an
additive constant, whereas with realization (39) both exactly coincide.
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